An iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint
نویسنده
چکیده مقاله:
In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of initial matrix. Furthermore, in the solution set of the above problem, the unique optimal approximation solution to a given matrix can also be obtained. A numerical example is presented to show the efficiency of the proposed algorithm.
منابع مشابه
an iterative method for the hermitian-generalized hamiltonian solutions to the inverse problem ax=b with a submatrix constraint
in this paper, an iterative method is proposed for solving the matrix inverse problem $ax=b$ for hermitian-generalized hamiltonian matrices with a submatrix constraint. by this iterative method, for any initial matrix $a_0$, a solution $a^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...
متن کاملAn Iterative Method for the Hermitian-generalized Hamiltonian Solutions to the Inverse Problem Ax=b with a Submatrix Constraint
In this paper, an iterative method is proposed for solving the matrix inverse problem AX = B for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix A0, a solution A ∗ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of init...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولThe submatrix constraint problem of matrix equation AXB+CYD=E
We say that X = [xij ]i,j=1 is symmetric centrosymmetric if xij = xji and xn−j+1,n−i+1, 1 ≤ i, j ≤ n. In this paper we present an efficient algorithm for minimizing ‖AXB + CY D − E‖ where ‖ · ‖ is the Frobenius norm, A ∈ Rt×n, B ∈ Rn×s, C ∈ Rt×m, D ∈ Rm×s, E ∈ Rt×s and X ∈ Rn×n is symmetric centrosymmetric with a specified central submatrix [xij ]r≤i,j≤n−r, Y ∈ Rm×m is symmetric with a specifie...
متن کاملThe Inverse Problem of Centrosymmetric Matrices with a Submatrix Constraint
By using Moore-Penrose generalized inverse and the general singular value decomposition of matrices, this paper establishes the necessary and sufficient conditions for the existence of and the expressions for the centrosymmetric solutions with a submatrix constraint of matrix inverse problem AX = B. In addition, in the solution set of corresponding problem, the expression of the optimal approxi...
متن کاملNumerical solutions of AXB = C for centrosymmetric matrix X under a specified submatrix constraint
We say that X = [xi j ]n i, j=1 is centrosymmetric if xi j = xn− j+1,n−i+1, 1 i, j n. In this paper, we present an efficient algorithm for minimizing ‖AX B−C‖ where ‖·‖ is the Frobenius norm, A∈Rm×n , B∈ Rn×s , C ∈Rm×s and X ∈Rn×n is centrosymmetric with a specified central submatrix [xi j ]p i, j n−p . Our algorithm produces a suitable X such that AX B=C in finitely many steps, if such an X ex...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 39 شماره 6
صفحات 1249- 1260
تاریخ انتشار 2013-12-15
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023